Enhancement of Round Tube and Flat Tube-Louver Fin Heat Exchanger Performance Using Deluge Water Cooling

نویسندگان

  • Yunho Hwang
  • Sahil Popli
  • Reinhard Radermacher
  • Sahil POPLI
  • Yunho HWANG
  • Reinhard RADERMACHER
چکیده

An experimental study has been conducted to evaluate the performance of a compact round-tube louver-fin condenser, each with frontal areas of 0.25 m in both dry and wet conditions. Deluge water cooling is achieved by incorporating a perforated bottom plate-type water distributor on top of the round tube heat exchanger. Water is used as a refrigerant, and enters the heat exchanger tubes at 35°C temperature. Ambient air and deluge cooling water are both maintained at 22°C temperature. Heat exchanger capacity and air-side pressure drop are measured with the heat exchanger angle set at 0° and 21° from vertical, with a frontal air velocity of 1.4 m/s and 3.5 m/s without deluge water cooling, and a frontal air velocity of 1.4 m/s with deluge water cooling. For both heat exchangers, the capacity was significantly enhanced with the use of deluge water cooling and with the heat exchanger angle set at 21° from vertical.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Air-Side Thermal Performance of Micro-Channel Heat Exchangers Under Dehumidifying Conditions

An experimental study for air-side thennal-hydraulic performance of brazed aluminum heat exchangers under dehumidifYing conditions has been performed. For 30 samples of louvered fin heat exchangers with different geometrical parameters, the heat transfer and pressure drop characteristics for wet surface were evaluated. The test was conducted for air-side Reynolds number in the range of 80-300 a...

متن کامل

Effect Of Humidity And Inclination Angle On Microchannel Heat Exchanger Performance

The effect of inlet humidity conditions and inclination angle on the air side thermal hydraulic performance of a brazed aluminum heat exchanger has been investigated experimentally. The crossflow heat exchanger had flat tubes and folded fins with fin and louver pitch of 2.1 mm and 1.4 mm, respectively. The glycol temperature was held nearly isothermal at 1C, while humidity of the 12C inlet air ...

متن کامل

Minimization of Entransy Dissipations of a Finned Shell and Tube Heat Exchanger

Improving heat transfer and performance in a radial, finned, shell and tube heat exchanger is studied in this study. According to the second law of thermodynamics, the most irreversibilities of convective heat transfer processes are due to fluid friction and heat transfer via finite temperature difference. Entransy dissipations are due to the irreversibilities of convective heat transfer. There...

متن کامل

Optimization of Finned-Tube Heat Exchanger with Minimizing the Entropy Production rate

A compact fin-tube heat exchanger is used to transfer current fluid heat inside the tubes into the air outside. In this study, entropy production and optimized Reynolds number for finned-tube heat exchangers based on the minimum entropy production have been investigated. As a result, the total entropy of compact heat exchangers, which is the summation of the production rate of fluid entropy ins...

متن کامل

Transient thermal study of recuperative tube in tube heat exchanger operating in refrigeration system using experimental test and mathematical simulation

Joule-Thomson cooling systems are used in refrigeration and liquefaction processes. There are extensive studies on Joule-Thomson cryogenic systems, but most of them coverage steady state conditions or lack from experimental data. In the present work, transient thermal behavior of Joule-Thomson cooling system including counter current helically coiled tube in tube heat exchanger, expansion valve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014